
Flea86 level-1 System

User Manual

Revision 0.20 (Preliminary document)

Contents:

SECTION 1 - INTRODUCTION	;
SECTION 2 - GETTING STARTED WITH THE FLEA86	ŀ
SECTION 3 - USING THE FLEASET.EXE UTILITY6	j
SECTION 4 - FLEA86 LEVEL-1 SYSTEM OVERVIEW	,
SECTION 5 - SOUND GENERATION	
SECTION 6 - VIDEO CONTROLLER	,
SECTION 7 - FLEACOM SERIAL COMMUNICATIONS PORT)
SECTION 8 - FLEABUS-I CONTROL PORT	ŀ
SECTION 9 - MASS STORAGE)
SECTION 10 – INPUT DEVICES	
SECTION 11 - PC SYSTEM SERVICES	,
APPENDIX A - HOW TO CREATE A CUSTOM DISK IMAGE	,
APPENDIX B - CURRENT FLEA86 LEVEL-1 FIRMWARE STATUS	,

Section 1 - Introduction

The aim of this manual is not only to inform the user of the capabilities of Flea86 (as well as its limitations), but it also explores the simplicity (and potential power) associated with 'tried-and-tested' variants of the mainstream DOS kernels i.e. MS-DOS, DR-DOS, FreeDOS etc.

Flea86 level-1 system is built around a small fast, modern 8052 microcontroller derivative running a fully-custom emulator program (or virtual machine). All system functions (including BIOS functions) are handled by the emulator, which is customizable to allow execution of a wide range of PC software. It is recommended that all users become familiar with the FLEASET.EXE utility as explained in section 3 of this manual.

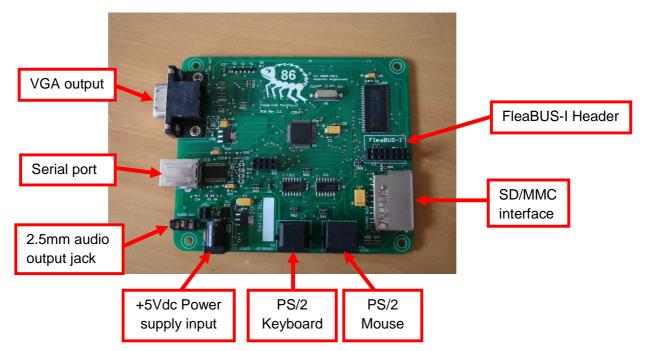
For the electronics enthusiast, Flea86 allows for heaps of experimentation at a very low cost with very simple and easy-to-use hardware. Users seeking to get the very most out of the Flea86 (through programming and peripheral interfacing) are advised to read through the entire manual. Users who are seeking to play a few old games from their personal collection or freeware titles found online are encouraged to read Sections 3, 4 and Appendix 'A'.

Attention all users! This manual is not a 'how-to' guide on using DOS of any variant. It is essential that the user understands the basics of working under a DOS environment, or acquire that understanding through the many resources available online.

Attention advanced users! It is assumed the advanced user possesses at least basic knowledge and/or some experience in digital electronics application and circuit construction techniques before attempting to build the example interface circuits outlined in this manual.

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)


Section 2 - Getting Started with the Flea86

Flea86 is designed as a 'plug-and-play' solution for a wide variety of applications. Following list outlines the actual hardware and accessories needed to get up and running:

Flea86 level-1 system - What you will need:

- 1.) Flea86 level-1 main-board (of course!)
- 2.) +5V regulated DC power supply, with centre-pin positive DC plug
- 3.) VGA-compatible monitor or television capable of displaying 640x480 @ 60Hz refresh rate or better
- 4.) PS/2-compatible keyboard (Flea86 will still boot without it connected)
- 5.) PS/2-compatible mouse (behavior same reason as point #4)
- 6.) Flea86 'startup disk' MMC (or SD card with MMC-compatibility) flash card with one bootable partition installed (User may also refer to Appendix A).
- 7.) Amplified audio speaker with a 3.5mm to 2.5mm phone jack adapter added
- 8.) This last item is merely optional and completely at the user's discretion a suitably wired (off-the-shelf or custom) I/O daughterboard that plugs into the FleaBUS-I control port

Main-board system board layout:

Flea86 System board pre-startup Precautions:

With over-current and reverse-polarity protection on it's input supply as well as current limiting resistors on nearly all of it's board connectors, Flea86 hardware is reasonably well-protected electrically. That said however, care should be exercised when powering up the bare motherboard by:

1.) Ensuring there is nothing electrically conductive within close proximity to Flea86 system board prior to power-up (including beverages i.e. coffee/beer etc.)

2.) Connection of all other peripherals to Flea86 and installation of the SD card prior to applying input DC power.

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 2 - Getting Started with the Flea86 (Continued)

About the supplied 'startup disk':

On the MMC flash card (labeled 'startup disk') supplied with every Flea86 level-1, comes preinstalled with the following:

- 1.) Pre-formatted 502MB FAT32 partition
- 2.) Bootable FreeDOS kernel (currently version 2038)
- 3.) Cutemouse v1.9 mouse driver located in the root directory
- 4.) Flea86 example programs located in C:\F86DEMOS
- 5.) Flea86 example source code located in C:\F86DEMOS\SOURCE

Note: All Flea86 example programs require QuickBASIC interpreter to be installed on the flash drive, which is freely available online.

Creating a custom Hard Disk image for the Flea86

Refer to Appendix 'A'

Section 3 - Using the FLEASET.EXE utility

Included with every Flea86 startup flash card is a small utility called FLEASET.EXE. This utility program can be found in the \Flea86 folder of the flash card's root directory, along with a copy of the corresponding QuickBASIC source code.

Its purpose is to allow the user to configure various aspects of the Flea86 virtual machine to enhance the overall system compatibility with both new and legacy software.

To run FLEASET.EXE, the user will type in the filename FLEASET at the DOS command prompt (with the current directory pointing to the root directory) and press the ENTER key. The user will then be presented with a configuration menu with five options - these are each described in detail below:

Option #1.) Toggle virtual 8088 CPU speed (0=4.77MHz/1=7MHz)

Configures the Flea86 to allow a reasonable degree of compatibility, in terms of raw 8088 CPU speed with selected (and also possibly very old!) legacy programs. Default is 7MHz on boot-up.

Option #2.) Disable virtual 8253 Timer #0 anti-alias filter (0=Enabled/1=Disabled)

When this parameter is set, Flea86 can accept faster/smaller 8253 timer reload values for Timer#0 – which can be (sometimes) helpful for games that run the timer at a high reload-rate (i.e. for speech-sample playback through the sound circuit). Anti-alias filter is enabled by default on boot-up.

Option #3.) CPU overclock - WARNING: NOT RECOMMENDED!!! (90-140)

Configures the host CPU on the Flea86 to increase the emulated CPU speed/video refresh rate should the user wish to run slightly more modern DOS software. Default is 90 (no over-clock). Warning: this option increases the video refresh rate – make sure your video display supports refresh rates above 60Hz otherwise damage may result, especially if it's an early-model CRT monitor! Recommended maximum overclock value to be 120.

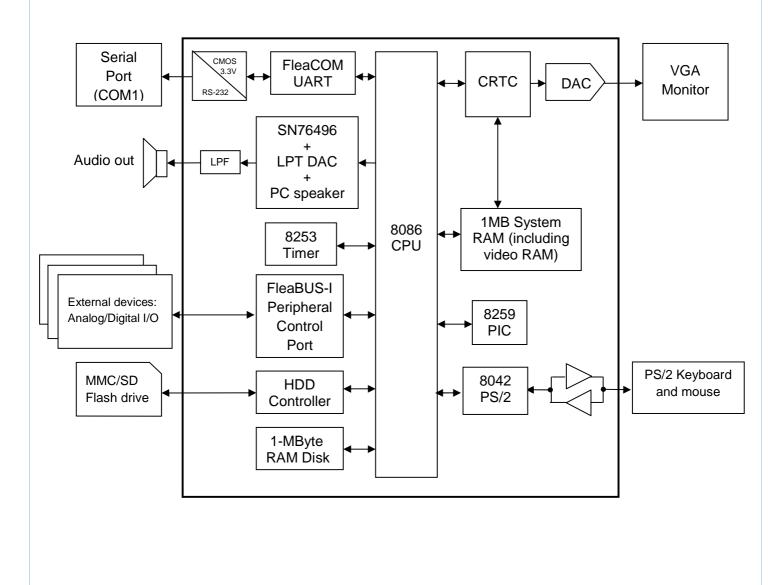
Option #4.) Enable Hard Disk Write access (0=Disabled/1=Enabled)

This option, if enabled, allows the MMC/SD card to be accessible to application programs for writing as well as reading of hard disk sectors. Hard disk writes are disabled on boot-up.

Option #5.) Update Flea86 Emulator Firmware

Note: Make sure that you have the required binary (.BIN) image file in the same directory as the FLEASET.EXE utility before selecting this option! Firmware updates are not permanent and will only remain installed, so as long as power is applied to Flea86 and that a hardware reset is not generated by the user.

When this option is selected, the FLEASET will then ask if you are sure about proceeding with this option. Next it will ask for the filename (without the file extension) of the firmware update file to be loaded into the Flea86 main processor. Once the filename is entered, FLEASET will trigger a system warm boot of Flea86 and subsequently boot using the new firmware file.


Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 4 - Flea86 level-1 system overview

The Flea86 level-1 virtual machine, like the system it was designed to emulate, consists of many sub-systems that come together to form an IBM-PC. Following block diagram illustrates how all these sub-systems and circuit modules come together.

Flea86 level-1 main-board system block diagram:

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

While the system block diagram on the previous page provides a simple overview, following describes each sub-system block in more detail. Note: overall Flea86 compatibility with all emulated components in the following list, are subject to the exceptions outlined in Appendix B.

8086 CPU:

Flea86 emulates an 8088 CPU with the following added opcodes as found in an 80188 CPU: PUSHA, POPA, PUSH immediate

Flea86 executes at an equivalent 8086 CPU clock rate, which is adjustable, in the range of 3-8MHz. This clock rate is adjustable and has an over-clock capability built into the Flea86 emulator. Both options are accessible via the FLEASET.EXE utility (refer section 3).

8253 System Timer:

In the Flea86 implementation of the 8253 Timer chip, Timers #0 and #2 are available.

<u>8253 Timer #0:</u> Programmable in the same manner as a real IBM-PC, subject to the exceptions outlined in Appendix B. Timer #2 overflow interrupt is available at Interrupt vector 08h.

<u>8253 Timer #2:</u> Output is connected to the PC speaker and is controlled in a manner identical to a real IBM-PC.

8259 Interrupt Controller:

Only the default 'nested interrupt' mode of the 8259 is supported in the Flea86 emulator. Refer to the Port I/O map toward the end of this section for an overview of the related registers.

8042 PS/2 Keyboard and Mouse Interface Controller:

PS/2 keyboard services are handled by the FleaBIOS @ INT16h (refer to section 10), while the 'keystroke detected' hardware interrupt located at Interrupt vector 09h. Refer to the Port I/O map toward the end of this section for an overview of the related registers.

PS/2 mouse services are handled by the FleaBIOS @ INT15h (refer to section 10). Mouse 'activity detected' hardware interrupt is located at Interrupt vector 74h.

1 Megabyte RAM-Disk and Mass Storage Controller:

With the execution of the custom-supplied RAMDISK.COM, Flea86 provides a 1,018,368-byte RAM Disk configured as Drive A:\

Flea86 provides basic MMC/SD flash card support for mass storage, accessible through the FleaBIOS via the INT 13h handler (refer section 9). No user-accessible ports are available within the I/O port map. Supported controller is simply a 'generic' device designed to provide basic support. NOTE: Flea86 only supports flash cards that use 512-bytes per sector addressing i.e. 2GB SD cards will not work at all due to their 1024-byte sectors etc.

Date: 07/08/2012 Revision: 0.20 (Preliminary)

System RAM:

System RAM on the Flea86 main board consists of 640KByte conventional and up to 224Kbyte in the upper memory region. Flea86 Memory Map is outlined in the following table:

Memory description:	Address range:
Interrupt Vector Table	0000h - 03FFh
BIOS/DOS/User Data Area	0400h - 05FFh
Standard user RAM area	0600h - 09FFFFh
MCGA/VGA Video RAM (64K max.)	0A0000h - 0AFFFFh
CGA/PCjr/TGA Video RAM (32K max.)	0B8000h - 0BFFFFh
Peripheral drivers / Upper Memory	0C8000h - 0EFFFFh
BIOS ROM / Upper Memory	0F0000h - 0FFFFFh

Video Controller:

Flea86 level-1 main board contains a virtual video controller with up to 128K VRAM, depending on the selected video mode. Flea86 attempts to emulate the following graphics adapters: CGA, PCjr/Tandy and MCGA. Refer to section 6 for specific details i.e. video service software interrupt INT10h and Port I/O mapping details.

Audio Generator:

Flea86 consists of the following options for sound generation, which can be operated separately or together if desired:

- 1.) SN76496 4-voice sound generator compatible
- 2.) User audio DAC channel available
- 3.) IBM-PC compatible PC speaker

Refer to section 5 for specific details relating to audio generation. Overall Flea86 compatibility with this device is subject to the exceptions outlined in Appendix B.

Serial communication (via FleaCOM interface):

One RS-232 serial communications channel with 31-byte character receive buffer, supporting the following speeds: 150, 300, 600, 1200, 2400, 4800, 9600 and 57600 Baud. Refer to section 7 for specific details relating to the FleaCOM serial port.

Peripheral Expansion (via FleaBUS-I):

Enhanced SPI compatible port - up to sixteen external SPI-equipped slave devices can be connected to the Flea86 for system I/O expansion. Refer to section 8 for specific details relating to the FleaBUS-I control port.

Date: 07/08/2012 Revision: 0.20 (Preliminary)

System BIOS ROM (via FleaBIOS rev1.0a):

Flea86 contains its own built-in BIOS as an integral part of the Flea86 emulator. FleaBIOS supports the following interrupt functions, details of which can be found in sections 6 and 9:

- Int 10h AH = 00h, 02h, 03h, 05h, 06h, 07h, 08h, 09h, 0Ah, 0Bh, 0Eh, 0Fh, 10h, 11h, 12h, 1Ah, 1Bh
- Int 11h, 12h
- Int 13h AH = 00h, 02h, 03h, 08h, 15h
- Int 15h AH = 88h, C0h, C2h
- Int 16h AH = 00h, 01h
- Int 19h
- Int 1Ah AH = 00h, 01h

Overall FleaBIOS ROM compatibility is subject to the exceptions outlined in Appendix B.

Flea86 Main board Product Specifications:

- **Electrical:** Active current draw ~250mA @ 5V typical with no FleaBUS peripherals installed and no over-clocking enabled.
- Mechanical: Overall dimensions 106 x 89mm overall. Four x 3.3mm mounting holes with centers located at each corner of 94 x 80.4mm. System rated for 0-50deg.c temperature ambient with no CPU over-clocking enabled.

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

System I/O port map:

In addition to the BIOS ROM interrupt services, the Flea86 main board also provides direct access to the on-board peripheral devices at the register level via port I/O mapping. Supported system hardware registers are provided in the following table:

Port Address:	Port description:
20-21h	8259 Programmable Interrupt Controller - interrupt service (20h) and mask (21h) registers
40h	8253 Programmable Interval Timer - Timer#0 data load/store register
42h	- Timer#2 data load/store register
43h	- Configuration register
60h-62h	8042 PS/2 Input device controller
64h	
C0-C1h	SN76496 Control registers (refer section 5)
3C8-3C9h	VGA Palette index/data registers (refer section 6)
3D4h-3D5h	6845 CRTC index/data registers (refer section 6)
3D8h	6845 CRTC hardware mode register (refer section 6)
3D9h	6845 CRTC CGA palette register (refer section 6)
3DAh	Video status register and Tandy Graphics palette index register (refer section 6)
3DEh	Tandy Graphics palette data register (refer section 6)
3DFh	Tandy Graphics page select register (refer section 6)
1000-1010h	FleaCOM serial communications port (refer section 7)
1011h	Audio DAC output register (refer section 5)
1200-1209h	FleaBUS-I control port (refer section 8)
	Flea86 CONFIG – master enable register (write only)
FAAAh	Valid write values: B7h = Flea86 hard disk writes to SD card are enabled.
FAABh	Flea86 CONFIG - Host CPU over-clock register (valid write values: 96h->B4h decimal)
FAACh	Flea86 CONFIG - Anti-alias control of the 8253 (1=ON and 0=OFF, normally ON)
FAADh	Flea86 CONFIG - v8088 clock select (valid write values: F5h = 4.77MHz, EEh = 8MHz)
FAAEh	Flea86 CONFIG - Start Flea86 firmware update cycle

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 5 - Sound generation

Flea86 level-1 sound generation capability is comprised of three separate circuits:

- 1. Basic tone (Beep) generation through the traditional PC-speaker sound generator
- 2. Musical note and noise generation is provided by an emulated clone of the SN76496 4voice sound chip, as used in classic systems ranging from the Tandy 1000 to the Sega Master System game console.
- 3. Digitized sound playback, provided by a Flea86-specific 8-bit audio DAC. The DAC output value can be updated by writing a data byte to I/O port #1011h. Note this port feeds directly into the DAC channel and uses no DMA or data buffering.

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 6 - Video Controller

Flea86 level-1 supported Graphics Modes: The Flea86 video controller is built around two main emulation modes, selectable via the disk signature set in the Master Boot Record of the SD/MMC . These are

1.) CGA/TGA compatibility mode

2.) MCGA/VGA compatibility mode

Following table outlines the available video modes on the level-1 Flea86:

Screen	Туре	Colors	Emulation mode	# of pages	KB VRAM Per page	BIOS ROM INT10 Video mode value	Comments
40 x 25	text	16	both	1	2	00h, 01h	Partial support only
80 x 25	text	16	both	1	4	02h, 03h	
160 x 100	Pixel	16	both	1	16	02h, 03h	'tweaked text' mode
160 x 200	Pixel	16	CGA/TGA only	1	16	06h	'Composite TV' mode
320 x 200	Pixel	4	both	1	16	04h	
640 x 200	Pixel	2	both	1	16	06h	
160 x 200	Pixel	16	CGA/TGA only	8	16	08h	Up to 128K VRAM
320 x 200	Pixel	16	CGA/TGA only	4	32	09h	Available
320 x 200	Pixel	256	MCGA/VGA only	1	64	13h	

<u>Key:</u>

CGA = Color Graphics Adapter VGA = Video Graphics Array TGA = Tandy Graphics Adapter MCGA = Multi-Color Graphics Adapter

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 6 - Video Controller – BIOS INT10h Functions

Following table describes the INT10h services as supported by the Flea86 level-1 BIOS (FleaBIOS rev 1.0a):

Sub-function AH = nn	Function Description	Values Passed to function	Values returned from function	Comments
00h	Sets video display mode, clears video RAM and loads default palette	AL = video mode value If bit 7 in AL is also set before calling the function the screen is not cleared	Video mode value saved to BIOS data area 0040:0049h	
01h	Text cursor control	CH = cursor control, where: 40h = Cursor not visible 00h = Cursor visible	Video mode value saved to BIOS data area 0040:0049h	'slow blink' option supported only for visible cursor
02h	Set text cursor position	DL = new cursor x DH = new cursor y	None	Refer Appendix B
03h	Get text cursor position	none	DL = cursor x DH = cursor y	
	Get CPU page register	AL = 80h	BH = CRT page BL = CPU page	
05h	Set CPU page register	AL = 81h BL = CPU page	None	
0511	Set CRT page register	AL = 82h BH = CRT page	None	
	Set both CRT and CPU page registers	AL = 83h BH = CRT page BL = CPU page	None	

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 6 - Video Controller – BIOS INT10h Functions (continued)

Sub-function AH = nn	Function Description	Values Passed to function	Values returned from function	Comments
06h	Scroll text window upwards	AL = number of lines to scroll (AL = 00h clears window) BH = erase color		
07h	Scroll text window downwards	CH,CL = x, y of window upper left corner DH,DL = x, y of window lower right corner	None	
08h	Read character and attribute from current cursor position	BH = 00h	AH = attribute AL = character	
09h	Write character and attribute to current cursor position	AL = character BH = 00h BL = attribute CX = number of times to write char	None	
0Ah	Write character only to current cursor position	AL = character BH = 00h CX = number of times to write char	None	
0Bh	CGA Palette select	BH = 01h BL = select palette	None	
0Eh	Write character and update cursor position (teletype mode)	AL = new character	None	
0Fh	Get current video mode	None	BH = 00h AH = chars/ line AL = current video mode	

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 6 - Video Controller – BIOS INT10h Functions (continued)

Sub-function AH = nn	Function Description	Values Passed to function	Values returned from function	Comments
	Write Tandy color palette - update single color only	AL = 00h BH = New color value BL = Palette index	None	Valid data range per
	Write Tandy color palette - update entire table	AL = 02h ES:DX = far pointer to source of new Tandy palette color values	None	color byte = 00h-0Fh
10h	Write VGA color palette DAC registers	AL = 12h BX = start palette index CX = end palette index ES:DX = far pointer to source of new palette DAC register values (256 x 3 = 768 bytes total)	None	
	Read VGA color palette DAC registers	AL = 17h ES:DX = far pointer to read palette DAC register values (256 x 3 = 768 bytes total)	Location pointed to by ES:DX contains current palette DAC values	
11h	Get EGA/VGA Font status	AL = 30h	ES = C000h BP = 0500h CX = 0008h DL = 18h	
12h	Enable/Disable video output	BL = 10h AL = video enabled, where: 00h = video enabled 01h = video disabled		
	Get EGA hardware information	BL = 36h	BX = 0003h CX = 0009h	Function only active when VGA emulation is selected in Flea86
1Ah	Get display combination code	AL = 00h	BX = 0008h AL = 1Ah	configuration
1Bh	Get VGA state information block	BX = 0000h AL = 00h ES:DI = far pointer to read VGA adapter state table (64 Bytes total)	AL = 1Bh Location pointed to by ES:DX contains current VGA state table data	

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 6 - Video Controller – port I/O mapping

I/O Address 3C8h: VGA Palette index register

Port Read behavior:

Summary - NO FUNCTION

Port Write behavior:

Summary -VGA Palette DAC register selectDetails -Selects the desired VGA palette DAC register to modify.Valid data range 00h->FFh.

I/O Address 3C9h: VGA Palette data register

General behavior:

Note: three successive reads (or writes) must be made to this register after setting 3C8h, with the lower six-bits of a byte read out corresponding to a primary color (red, then green and lastly blue). This is because the VGA palette registers are 18-bits wide configured as 6-bits per Red, Green and Blue analog video.

Also note that the Flea86 truncates the DAC value to 3/3/2 bits per R/G/B to simplify output circuitry. Valid data range is 00h->3Fh.

Port Read behavior:

Summary - Reads from specified VGA Palette DAC register

Details - Retrieves the addressed color palette register value pointed to by port 3C8h. Note that three successive reads from this register are required to retrieve one DAC value (see above).

Port Write behavior:

Summary - Writes to specified VGA Palette DAC register

Details - Updates the addressed color palette register value pointed to by port 3C8h. Note that three successive writes to this register are required to update one DAC value (see above).

I/O Address 3D4h: 6845 CRTC index register

Port Read behavior:

Summary - NO FUNCTION

Port Write behavior:

Summary - 6845 CRTC register select

Details - Selects the desired register index for the 6845 CRTC register block Note - only register index #9 supported, therefore the only valid value here is 9!

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 6 - Video Controller – port I/O mapping (continued)

I/O Address 3D5h 6845 CRTC register data transfer

Port Read behavior:

Summary -6845 CRTC register readDetails -Retrieves the addressed 6845 CRTC register value pointed to by port 3D4h

Port Write behavior:

Summary - 6845 CRTC register write

Details - If CRTC index was setup to point to register 9, this sets up the 'number of scan lines per character'. Used for generating the 160x100 'tweaked text' mode, by setting index register 9 with the value of 2 while in 80x25 text mode.

Valid data range for CRTC index #9 is 0->7h

I/O Address 3D8h 6845 CRTC hardware mode

Port Read behavior:

Summary - NO FUNCTION

Port Write behavior:

Bit 0 = '80_column_textmode' When bit set to 1, tells the CRTC to generate to 80-columns text (only works in text mode), otherwise 40-columns is selected. Default is ON (1).

Bit 1 = 'medium_resolution_mode' When bit set to 0, selects character text display mode, else 320x200 graphics mode is selected. Default is OFF (0)

Bit 2 = 'colorburst_disable' When bit set to 1, turns off the composite TV color burst signal. Activates the 160x200 CGA composite-color mode when the 640x200 monochrome graphics mode is set. Default is ON (1).

Bit 4 = 'high_resoultion_mode' When bit set to 1, Selects 640x200 monochrome video mode. Default is OFF (0)

All other bit settings in this port are not used

I/O Address 3D9h 6845 CRTC palette select

Port Read behavior:

Summary - NO FUNCTION

Port Write behavior:

Note: the following only works in conjunction with CGA 320x200-4 color mode!

Bit 4 = 'palette_high_intensity' When bit set to 1, the intensity of the currently selected CGA palette is increased in accordance with the legacy CGA specification.

Bit 5 = 'palette_mode' When bit set to 1, selects the alternate CGA 4-color palette in accordance with the legacy CGA specification.

All other bit settings in this port are not used

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 6 - Video Controller – port I/O mapping (continued)

I/O Address 3DAh 6845 CRTC video status / Tandy Graphics Palette index

Port Read behavior:

Bit 0 = 'video retrace active' When bit set to 1, indicates when either horizontal or vertical retrace are in progress.

Bit 3 = 'vertical retrace active' When bit set to 1, indicates when <u>only</u> the vertical retrace is in progress.

Port Write behavior:

Summary -TGA Palette DAC register selectDetails -Selects the desired Tandy Graphics palette color to modify.Valid data range 10h->1Fh.

I/O Address 3DEh Tandy Graphics Palette data

Port Read behavior:

Summary - NO FUNCTION

Port Write behavior:

Summary - TGA Palette DAC indirect color write

Details - Modifies the color palette register pointed to by port 3DAh with a standard 'Tandy ROM' color passed by a valid value written to this port. Valid data range 0h->0Fh

I/O Address 3DFh Tandy Graphics Video Page Register

Port Read behavior:

Summary - NO FUNCTION

Port Write behavior:

Bits 0-2 = 'CRT 16K video pager select' Selects one of eight video pages to be accessed by the CPU @ B000:8000h. For the 320x200 16-color mode, least significant bit is ignored. **Bits 5-3 = 'CPU 16K video pager select'** Selects one of eight video pages to be accessed by the CRTC @ B000:8000h. For the 320x200 16-color mode, least significant bit is ignored.

All other bit settings in this port are not used

I/O Address 1010h Flea86 Video Output Control

Port Read behavior:

Bit 0 = 'video enabled' When enabled, allows data from VRAM to be sent to the video RGB outputs at the appropriate time. When disabled, the RGB outputs are switched off, though V/H-Sync signals are still active. Normally ON (1)

All other bit settings in this port are not used

Port Write behavior:

Summary - NO FUNCTION

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 7 - FleaCOM serial communications port

Note: Users seeking a PC-compatible serial port solution for Flea86 are recommended to look at either building or purchasing an ISA-bus expansion option for Flea86.

For serial communication on the Flea86 level-1, a very simple solution is implemented. While this is opposed to any genuine (read complex and/or cumbersome) PC serial COM solution, it does allow an effective means of serial communication that is very straightforward to program - regardless of programming language used!

Essentially, the FleaCOM serial port is built around a small handful of I/O port registers that implement the following three functions:

- 1.) Baud-rate initialization
- 2.) Transmit buffer of one-byte in length, with status provided by a 'transmit status' flag bit
- 3.) Receive buffer of 31-bytes in length, with status provided by a 'received character counter'

FleaCOM serial port – Electrical details

Two options exist currently for connecting Flea86 to external devices via the on-board serial channel

- 1.) To a remote PC via USB virtual COM port (note: Prolific PL2303HX device driver required if using MS Windows XP/Vista/7. No device driver is required for Linux kernel builds 2.6.8 onwards).
- 2.) Via 3.3V logic interface directly to the host micro's UART using the on-board 4-way header (**Warning:** 'SJ2' solderable junction **MUST BE CUT** prior to using this option!!)

FleaCOM serial port – BIOS interrupt functions

None available - FleaCOM access must be performed through port I/O only. Please refer to the specific port I/O mapping on the following page.

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 7 - FleaCOM serial port – port I/O mapping

I/O Address 1000h FleaCOM configuration and transmit status register

Port Read behavior:

Bit 0 = 'transmitter_status' When bit set to 1, tells the user that one byte was transmitted from the transmit buffer, otherwise a byte transmit is underway and the transmitter is busy. User must test this bit first to ensure reliable transmission of data from the Flea86. Default is OFF (0).

All other bit settings in this port are not used

Port Write behavior:

Summary - FleaCOM Set low speed baud rate

Details - When a value ranging between 0->6 is sent to this register, the FleaCOM port baud-rate generator is configured for one of seven pre-set baud-rates. Valid values and their corresponding baud-rates are: 0 (9600 Baud), 1 (4800 Baud), 2 (2400 Baud), 3 (1200 Baud), 4 (600 Baud), 5 (300 Baud), 6 (150 Baud)

I/O Address 1001h FleaCOM Transmit / Receive register

Port Read behavior:

Summary - Read in a received byte from the serial port

Details - When this register is read, a byte (if available) is passed from the receive buffer and the buffer count is decremented by one. Before accessing this register, the user must first check to see if any bytes were received and waiting in the receive buffer by checking for a non-zero value in the buffer count register (I/O Address 1002h)

Port Write behavior:

Summary - Sends a byte to the serial port transmitter

Details - When data is written to this register, this data is passed on to the serial transmitter and (assuming it is not busy!) serial transmission of the byte will commence. Note: before accessing this register, the user must first check to see if the last serial transmission was successful by checking for a non-zero value in the transmit status register (I/O Address 1000h)

I/O Address 1002h FleaCOM receive buffer counter

Port Read behavior:

Summary - Read current receive buffer count

Details - Current receive buffer count is obtained by reading from this register. Valid values range from 0h->1Fh, with 1Fh indicating buffer overflow condition (requiring the count value to be reset by the user – see immediately below)

Port Write behavior:

Summary - Set current receive buffer count

Details - When data is written to this register, the data buffer count is updated to the new value. Nominal write value in most cases is '0' for initialization or buffer overflow purposes only.

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 7 - FleaCOM serial port – port I/O mapping (continued)

I/O Address 1003h FleaCOM High baud-rate enable

Port Read behavior:

Summary - NO FUNCTION

Port Write behavior:

Summary - Selects between standard and high baud-rate operation

Details - When data is written to this register, this data is passed on to the serial transmitter and (assuming it is not already busy) serial transmission of the passed byte will commence. Note: before accessing this register, the user must first check to see if the last serial transmission was successful by checking for a non-zero value in the transmit status register (I/O Address 1000h)

I/O Address 1004h FleaCOM High baud-rate select

Port Read behavior:

Summary - NO FUNCTION

Port Write behavior:

Summary - Select between 57,600 Baud or 115200 Baud (or 'other..')

Details - When valid data is written to this register, the FleaCOM port baud-rate generator is configured for one of two high baud-rates. User must have the High baud-rate mode enabled as well before the following baud rates are configured. Valid values and their corresponding baud-rates are: 0A3h = (57,600 Baud), 51h = (115,200 Baud)

Attention: All high-speed baud-rates given here are close approximations, not exact values (actual values are; 57,515 and 115,740 Baud respectively). High-speed baud-rates are also sensitive to over-clocking, due to the use of the (adjustable) 100MHz internal system clock instead of the external crystal as the baud-rate clock source.

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 7 - FleaCOM serial port – programming example

The following code example provides a good demonstration of the Flea86 serial port in action. Note: while a copy of this program already resides on the 'startup disk', you may copy/paste the following text on this page and save it as a .BAS file in a text editor if required.

Simple Flea86 Serial terminal Program. Written for the ' Microsoft QuickBasic Interpreter 1.1 by Valentin Angelovski (c) 2011

' To use the program, you will need a null modem cable and

' connect to a remote terminal using the following comms settings:

'9600 baud 8,N,1 with NO handshaking enabled! That's it.. :-)

'NOTES:

'* Only non-extended keys are processed for tranmission in this simple program!

'* While possible, this simple program does not check for receive buffer overrun!

' Set Flea86 baudrate to 9600. Can be changed from 300-9600 baud, valid values are: ' 0 = 9600 Baud 1 = 4800 Baud 2 = 2400 Baud 3 = 1200 Baud 4 = 600 Baud 5 = 300 Baud OUT & H1000, 0

' Clear receive buffer 'bytes received' count OUT &H1002, 0

' Transmit null character to initialise transmitter OUT &H1001, 0

' Clear screen and display welcome message CLS PRINT " Flea86 simple 9600 N81 serial terminal! Press ESC to exit "

' Begin Terminal main loop main:

' Get receive buffer count and if non-zero then read in a buffered character and display it.. IF (INP(&H1002) > 0) THEN PRINT CHR\$(INP(&H1001));

' Check for local user keystroke a\$ = INKEY\$

If no user keystroke detected, go back and repeat
 IF (LEN(a\$) = 0) THEN GOTO main
 IF a\$ = CHR\$(27) THEN END

'Local user keystroke detected!

' Is the transmitter busy? If no, get local keystroke and transmit it, else wait for previous

' keystroke transmission to complete TransmitterBusy:

IF (INP(&H1000) > 0) THEN usrkey% = ASC(a\$): OUT &H1001, usrkey%: a\$ = "": GOTO main GOTO TransmitterBus

```
Flea86 level-1 User Manual
```

Date: 07/08/2012 Revision: 0.20 (Preliminary)

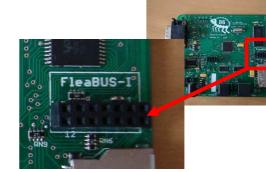
Section 8 - FleaBUS-I control port

In terms of system expansion on the Flea86 level-1, a simple yet flexible control port has been made available for this purpose.

<u>Update:</u> An optional ISA bus breakout option with limited I/O capability is now also available for Flea86, please refer to specific technical info regarding the item

The FleaBUS-I is essentially an SPI-master interface, with three slave address lines and an additional programmable output pin. This allows the connection, of either up to eight (using one 74HC138 decoder) or sixteen (using two 74HC138 decoders, with each decoder 'bank' addressed using the 'programmable output' pin) SPI-capable slave devices respectively. Transfer rate from this port is fixed at 5 Megabits/sec peak transfer rates. FleaBUS is equipped with a six-byte packet buffer, enabling easy data transfer of multi-byte commands and responses between the FleaBUS-I and connected SPI peripheral slaves. FleaBUS-I can be configured to receive data responses in the form of either byte or word form.

FleaBUS-I does have several limitations:


1.) Only SPI TIMING MODE 0 (i.e. CPOL=0 / CPHA=0) is supported at this time

2.) All response packets to the FleaBUS-I from any slave can only return one byte or one word.

3.) Data streaming to any SPI peripheral is not supported

Pin 13	Pin 11	Pin 9	Pin 7	Pin 5	Pin 3	Pin 1
IRQ7	SA1	SA0	GND	/RESET	IRQ3	+3.3V
Pin 14	Pin 12	Pin 10	Pin 8	Pin 6	Pin 4	Pin 2
	FBUS/USR SELECT	SA2	MCLK	MOSI	MISO	/CS

FleaBUS-I control port – Electrical details:

Pin(s):	Pin name(s):	I/O type:	Pin description:	
1	+3.3V	Supply	Peripheral supply (300mA maximum)	
2	/CS	output	Slave chip select (active low)	
3	/IRQ7	input	External Interrupt Request line #3	
4	MISO	input	Master-in data pin (SPI Mode 0)	
5	/RESET	output	System reset (active low)	
6	MOSI	output	Master-out data pin (SPI Mode 0)	
7	GND	Ground	System ground	
8	MCLK	output	Master Clock (SPI Mode 0)	
9, 11, 10	SA0, SA1, SA2	output	SPI slave address lines (3 address lines to be decoded)	
12	FBUS/USR SEL	output	FleaBUS ISA breakout or SPI user bus select pin	
13	/IRQ3	input	External Interrupt Request line #7	
14	NC	none	Reserved (do not connect)	

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 8 - FleaBUS-I Control port – Port I/O mapping

I/O Address 1200-1207h: Initiate data transfer to specific SPI slave

General behavior:

During either a read or write cycle, slave address lines SA0, SA1 and SA2 output states will mirror the least 3-bits of the addressed I/O Port i.e. 1200-1207h = 000 ->111 for Slave Address (SA) bits 2,1 and 0. In the case of multi-byte transfers, data is first shifted out of the 'packet build buffer' with the first byte corresponding to the first byte loaded into the buffer load register (1208h), then the subsequent read (or write) instruction is processed at the trailing end of the sent/received data packet.

Port Read behavior:

Summary - Reads response packet of specific SPI slave

Details - Read single (or the lower byte of a word) byte from a specific SPI slave into 8086 CPU 'AL' register or a combination of 'AL' contents and the 'Packet build buffer' (if loaded). The upper byte for SPI word data reception is available @ I/O port 1208h.

Port Write behavior:

Summary - Sends command/data packet to specific SPI slave

Details - Send single byte (or up to 7-byte) packet to a specific SPI slave out from either the 8086 CPU 'AL' register or a combination of 'AL' contents and the 'Packet build buffer' (if loaded).

I/O Address 1208h: FleaBUS-I SPI extended mode transfers

Port Read behavior:

Summary - Read received MSByte register (word reception mode only)

Details - Returns the upper byte of the last data word response received over the SPI into the 8086 CPU 'AL' register, provided that 'word_receive_enable' bit is set as described in port 1209h below. Valid data only becomes available in this register, once a read to any one of I/O ports 1200-1207h has taken place first – and this sequence must be carried out for <u>every</u> data word read cycle.

Port Write behavior:

Summary - Load 'Packet build buffer' register

Details - Loads a single byte into the packet build buffer from the 8086 CPU 'AL' register, with the buffer character count incremented by one. The packet build buffer is basically a first-in-first-out (FIFO) type of six bytes in length. Packet buffer must also be reloaded for all multi-byte transfers, since the packet count is reset to zero during any subsequent access to ports 1200-1207h

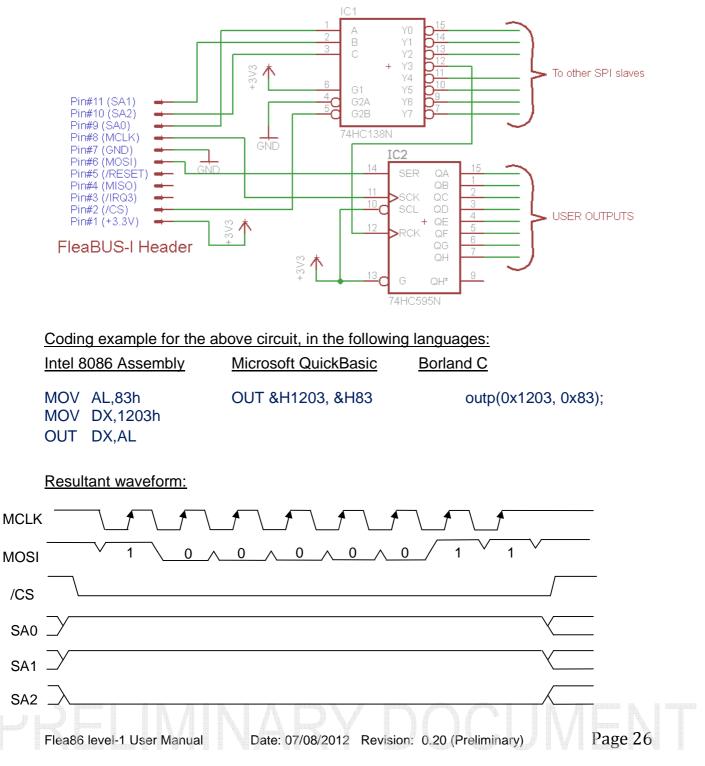
I/O Address 1209h: FleaBUS-I configuration register (write-only)

Port Write behavior:

Bit 0 = 'word_receive_enable'

When set, Puts FleaBUS-I into data word read mode. Normally OFF (0)

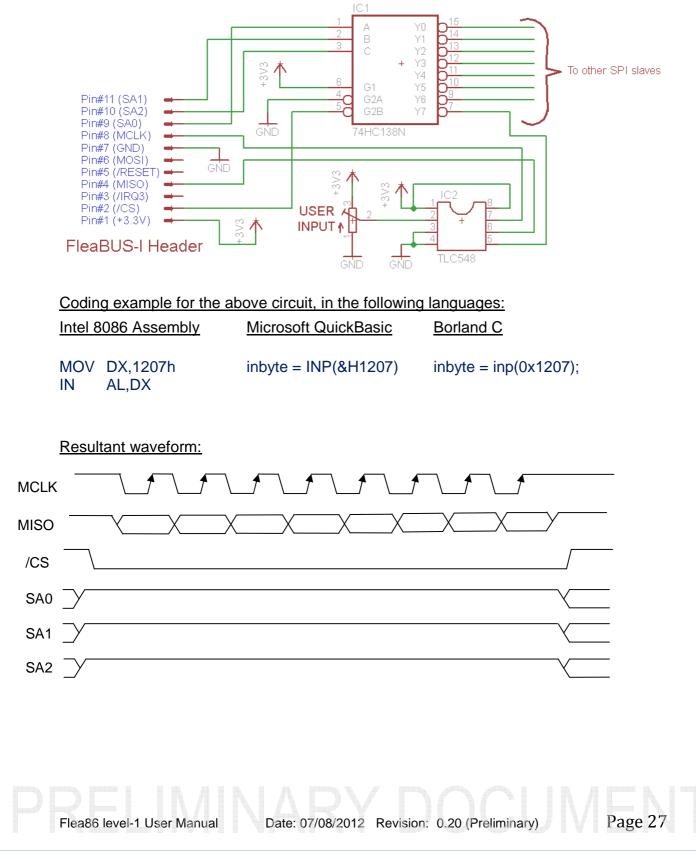
Flea86 level-1 User Manual


Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 8 - FleaBUS-I interfacing examples

<u>Generating single-byte data transfers:</u> Suppose one wanted to read data from a single-channel 8-bit analog-to-digital converter (i.e. TLC548) or control the state of an 8-bit serial-to-parallel output device (i.e. 74HC595). Following examples will produce their respective logic waveforms as illustrated below (Note: 'word_receive_enable' bit is assumed to be in default state i.e. OFF)

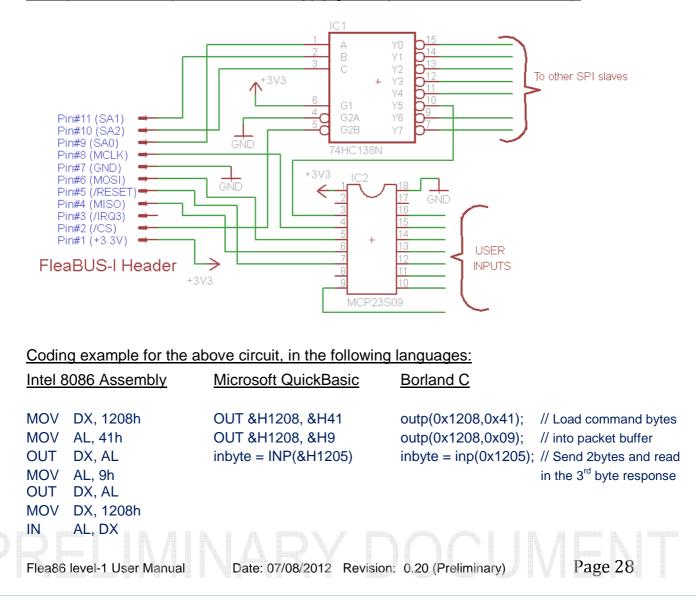
Example 1: Write output byte 83hex to 74HC595 (slave address #03):


Example schematic (Note: IC supply/ground pin connections not shown):

Section 8 - FleaBUS-I interfacing examples (continued)

Example 2: Read analog data byte from TLC548 (slave address #07):

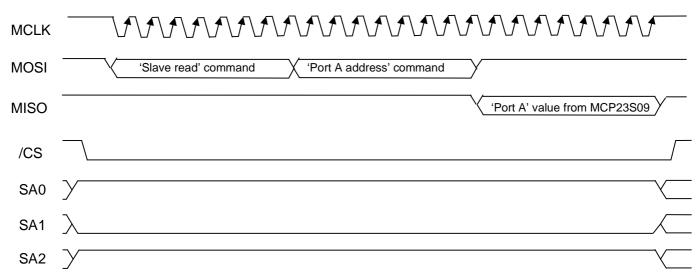
Example Schematic (Note: 74HC138 supply/ground pin connections not shown):



Section 8 - FleaBUS-I interfacing examples (continued)

<u>Generating multiple-byte data transfers:</u> Now that we have looked at interfacing to simple SPIcapable devices, let's move onto something a little more complicated. Suppose we want to control or monitor a more sophisticated device, such as an MCP23S09 programmable I/O chip, containing around 12 (addressable) registers internally and requires all data transfers (i.e. master command and slave response) on the bus to be exactly 3-bytes in length. Typical MCP23S09 data packet begins with a command byte, followed by an internal register address byte and finally a data-byte transfer (i.e. byte read or write) as directed by the command byte.

Note that only the most basic mode of operation is utilized in the MCP23S09 for the following example – users are encouraged to study the specific MCP23S09 product data sheet for information about other possibilities available with this device.


Example 3: Read port A status from MCP23S09 (slave address #05):

Example Schematic (Note: 74HC138 supply/ground pin connections not shown):

Section 8 - FleaBUS-I interfacing examples (continued)

Resultant waveform from sending a 'Port-A read' 3-byte packet:

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 9 - Mass Storage

Mass Storage BIOS interrupt functions:

Following table describes the **INT13h** services as supported by the Flea86 level-1 BIOS (FleaBIOS rev 1.0a):

Sub-function AH = nn	Function Description	Values Passed to function	Values returned from function	Comments
00h	Reset mass storage controller	DL = drive number	AH = error code, where 00h = no error If function failure, CPU carry flag = 1	
01h	Drive controller status	DL = drive number	AH = error code, where 00h = no error If function failure, CPU carry flag = 1	
02h	Read sector(s) from drive	AL = number of sectors to read/write (must be nonzero) CH = low eight bits of cylinder CL = sector number 1-63 (bits 0-5) and high two bits of cylinder (bits 6-7)	AH = error code, where 00h = no error AL = number of sectors transferred If drive read function	
03h	Write sector(s) to drive	DH = head number DL = drive number ES:BX = pointer to source (or destination) buffer in memory	ad number successful, address FleaBIO pointed to by ES:BX should contain numb pointer to source transferred data (fixe ation) buffer in	FleaBIOS rev 1.0a only supports drive number = 80h (fixed disk) Refer Appendix B
08h	Get drive parameters	DL = drive number	$\begin{array}{l} AH = 00h\\ BL = 00h\\ CX = FDFFh\\ DX = 0F01h\\ \\ If function failure,\\ CPU carry flag = 1 \end{array}$	
15h	Get drive type	DL = drive number	CX = 000Fh DX = B430h If function failure, AH = 00h, otherwise AH = 03h	

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 10 – Input Devices

PS/2 Mouse BIOS interrupt functions:

Following table describes the **INT15h** services as supported by the Flea86 level-1 BIOS (FleaBIOS rev 1.0a):

Sub-function AH = nn	Function Description	Values Passed to function	Values returned from function	Comments
88h	Get installed RAM capacity above 1MByte	None	AX = 0000h	
C0h	Get system configuration bytes from ROM table	None	ES = F000h BX = E6F5h AH = 00h, as it is a supported function	
	Mouse interface control	AL = 00h BH = PS/2 mouse control, where PS/2 Mouse Active BH = 1, (BH = 0 to turn off)	None	
	Get mouse ID	AL = 01h	BX = 00AAh	
C2h	Reset mouse	AL = 05h	None	
	Set Custom handler address	AL = 07h ES:BX = pointer to custom mouse handler, normally used by a resident mouse driver	None	
'Other'	Unsupported function	None	AH = 86h CPU carry flag = 1	

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 10 - Input Devices (continued)

PS/2 Keyboard BIOS interrupt functions (continued):

Following table describes the **INT16h** services as supported by the Flea86 level-1 BIOS (FleaBIOS rev 1.0a):

Sub-function AH = nn	Function Description	Values Passed to function	Values returned from function	Comments
00h	Get (or wait) for key press	None	AH = BIOS scan code AL = ASCII character	
01h	Get keyboard status	None	AH = BIOS scan code AL = ASCII character If key-press detected, CPU zero flag = 0 else CPU zero flag = 1	
02h	Get extended status	None	AL = Extended key bitmask, where: Bit 7 = Insert active Bit 6 = CapsLock active Bit 5 = NumLock active Bit 4 = ScrollLock active Bit 3 = Alt key pressed Bit 2 = Ctrl key pressed Bit 1 = left shift key pressed Bit 0 = right shift key pressed Note: this byte is also duplicated in the BIOS data area @ 0040:0017h	

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 11 - PC system services

Main board BIOS interrupt functions:

Following table describes the **INT11h** services as supported by the Flea86 level-1 BIOS (FleaBIOS rev 1.0a):

Sub-function AH = nn	Function Description	Values Passed to function	Values returned from function	Comments
Not needed	System Hardware configuration	None	AX = Hardware configuration word	In Flea86, this function returns with AX = 4304h when TGA/PCjr mode is set. Otherwise function returns AX = 4324h

Following table describes the **INT12h** services as supported by the Flea86 level-1 BIOS (FleaBIOS rev 1.0a):

Sub-function AH = nn	Function Description	Values Passed to function	Values returned from function	Comments
Not needed	System memory configuration	None	AX = installed conventional RAM in kilobytes	RAM capacity retrieved from BIOS data area 0040:0049h

Following table describes the **INT15h** services as supported by the Flea86 level-1 BIOS (FleaBIOS rev 1.0a):

Sub-function AH = nn	Function Description	Values Passed to function	Values returned from function	Comments
88h	Get installed RAM capacity above 1MByte	None	AX = 0000h	
C0h	Get system configuration bytes from ROM table	None	ES = F000h BX = E6F5h AH = 00h, as it is a supported function	

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Section 11 - PC system services (continued)

Main board BIOS interrupt functions (continued):

Following table describes the **INT19h** services as supported by the Flea86 level-1 BIOS (FleaBIOS rev 1.0a):

Sub-function AH = nn	Function Description	Values Passed to function	Values returned from function	Comments
Don't care	Initiate warm reset	None	None	Reboots Flea86

Following table describes the **INT1Ah** services as supported by the Flea86 level-1 BIOS (FleaBIOS rev 1.0a):

Sub-function AH = nn	Function Description	Values Passed to function	Values returned from function	Comments	
00h	Get system Time	None	DX = current least significant word of 32-bit 'tick' count CX = current most significant word of 32-bit 'tick' count	System 'tick' timer normally counts at a rate of (approximately) 18.2 'ticks' per second. Note: Timer value is also	
01h	Set system Time	DX = New least significant word of 32-bit 'tick' count CX = New most significant word of 32-bit 'tick' count	None	stored in the BIOS data area. 'Tick' timer count is stored in four successive bytes starting @ 0040:0017h in little-endian format	

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Appendix A - How to create a custom disk image

THIS SECTION IS UNDER CONSTRUCTION

Flea86 level-1 User Manual

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Appendix B - current flea86 level-1 firmware status (Current from 13th June 2011)

Hardware emulation:

- 8088 CPU module
 - 99.8% Functional with some 80186-level instruction support added
- 6845 graphics module
 - o Limited 6845 support at the register level hardware scrolling not supported.
 - o 40-column text modes only partially supported.
 - o Maximum scan-lines displayed on-screen is 200 in all available modes
- 8253 timer module
 - Timer modes 2 & 3 are supported only.
 - o Timer channel 0 registers have limited read-back capability.
 - Timer channel 1 (DRAM refresh timer) is unavailable.
 - \circ $\;$ Timer channel 2 is dedicated to the speaker operation only.
 - \circ Maximum timer resolution limited to ~10-bits (Timer 0)
 - o High-rate timer interrupt setups (>2KHz) are not recommended due to high overhead
- 8237 DMA module
 - o Not implemented, can be bypassed in most cases.
- 8259 interrupt module
 - Only basic (PC default) functionality provided i.e. nested interrupt priorities etc.
- 8042 keyboard module
 Basis functionality
 - o Basic functionality provided limitations exist with some extended key modes
- UART module
 - FleaCOM serial port, while greatly simplified over a genuine PC COM port, is not compatible to a standard PC COM port at the register level.
- Mass storage module
 - All mass-storage data transfers are handled directly via BIOS int 13h.
 - \circ $\;$ Emulator can only mount the flash disk upon system boot-up.
 - \circ $\,$ Only MMC part of mass-storage interface thoroughly tested.
 - \circ $\;$ BIOS support for one partition on the disk only.
- SN76496 Sound Generator
 - Functional, though with a linear volume control on all channels and using a different noise generation source
- FleaBUS-I Control Port
 - Functional. Cannot process uninterrupted data streams due to sharing of the MCLK signal with both the MMC and SDRAM input clock.

BIOS function map:

- Int 10h functions
 - o Cursor display options limited to 'blinking' or 'off'
 - Several very minor bugs remain
 - Int 13h functions
 - o Only CHS mapping supported, meaning 502MB disk space maximum under MS-DOS.
 - Drive controller currently supports only one drive located at 80h (C>)
- Int 14h functions
 - Not supported. FleaCOM serial port uses Flea86 custom I/O port mapping only.
- Int 15h functions
- Implemented
- Int 16h functions
 - o Limitations exist in certain extended key combinations in function AH=02h
- Int 1Ah functions
 - Real time clock related functions omitted from basic Flea86 level-1 specification

```
Flea86 level-1 User Manual
```

Date: 07/08/2012 Revision: 0.20 (Preliminary)

Notes on PC Compatibility:

Due to firmware constraints within the host MCU, this document is intended to serve as a basic guide for 'minimum system' requirements with respect to CPU, BIOS and peripheral functionality. Apart from the features outlined in this specification, no other claims are made regarding compatibility with an IBM-PC or equivalent system.

Product Warranty and Liability:

This document is preliminary and stated product or solution on offer is currently not yet available. Warranty terms will be provided closer to the release date. Liability shall be limited to replacement of the Flea86 system box due to a problem (proven to) stem from manufacturing and/or design fault only.

Legal Notice:

The Flea86 is **NOT** to be used as a solution for applications deemed to be <u>Safety-critical or life-support related</u>. The user shall **assume all responsibility** for any consequences arising from such use.

While every effort is made to ensure the information presented is accurate I, Valentin Angelovski, make no such guarantee. I also reserve the right to update this product specification sheet without prior notice. Flea86 level-1 emulation software and 'mascot' logo is the copyright of Valentin Angelovski. All trademarked product names listed herein belong to their respective trademark owners.

Copyright © 2009-2012 Valentin Angelovski